

Deuterium-Halogen Calibration Light Source

Installation and Operation Manual

For Products: DH-3-BAL-CAL, DH-3-BAL-CAL-EXT, DH-3 plus -

BAL-CAL, DH-3 plus -CAL-EXT

Document: 000-10000-191-02-201601

A HALMA COMPANY

AMERICAS & WORLD HEADQUARTERS

Phone: +1 727-733-2447 **Fax:** +1 727-733-3962

Sales: info@oceanoptics.com Orders: orders@oceanoptics.com

Support: techsupport@oceanoptics.com

Ocean Optics, Inc. 830 Douglas Ave. Dunedin, FL 34698

USA

Manufacturing & Logistics

4301 Metric Dr.

Winter Park, FL 32792

USA

EUROPE, MIDDLE EAST & AFRICA

Phone: +31 26-319-0500

Fax: +31 26-319-0505

Email: info@oceanoptics.eu

Germany: +49 711-341696-0 UK: +44 1865-811118 France: +33 442-386-588 Sales & Support

Geograaf 24 6921 EW Duiven The Netherlands

Manufacturing & Logistics

Maybachstrasse 11 73760 Ostfildern

Germany

ASIA

Phone: +86 21-6295-6600 **Fax:** +86 21-6295-6708

Email: asiasales@oceanoptics.com

Japan & Korea: +82 10-8514-3797

Ocean Optics Asia

666 Gubei Road

Kirin Tower Suite 601B

Changning District

Shanghai PRC, 200336

www.oceanoptics.com

Copyright © 2013 Ocean Optics, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from Ocean Optics, Inc.

Trademarks

All products and services herein are the trademarks, service marks, registered trademarks or registered service marks of their respective owners.

Limit of Liability

Every effort has been made to make this manual as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. Ocean Optics, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this manual.

Important Safety Notices

- 1. Do not remove or modify any installed safety device on this equipment. Doing so will void your warranty and create an unsafe operating environment.
- 2. Dangerous voltages are present in this device. There are NO user serviceable parts inside.
- 3. Only allow qualified personnel to service this unit.
- 4. Inspect this unit and its power supply before using it for the first time. Do not use the unit if it is damaged in any way. Contact your dealer for repair or replacement information.
- 5. The light source emits strong ultraviolet radiation. Wear safety glasses and UV protection clothing.

000-10000-191-02-201601 A

Table of Contents

About This Manual	iii
Document Purpose and Intended Audience	iii
Document Summary	iii
Product-Related Documentation	iii
Upgrades	iii
Warranty	iv
ISO Certification	iv
Chapter 1: Setup	1
Overview	1
Models Available	2
Unpacking the DH-3 Series Light Source	2
Contents	2
Connecting a Spectrometer to the DH-3	3
Chapter 2: DH-3 Specifications	5
onaptor 2. Dir o opcomoations	5
Operating Environment	
	5
Operating Environment	5 5
Operating Environment	5 5 7
Operating Environment Specifications	5 7
Operating Environment Specifications Appendix A: Calibration Basics Overview	5 7 7
Operating Environment	
Operating Environment Specifications	

About This Manual

Document Purpose and Intended Audience

This document provides you with an installation section to get your system up and running, basic information about the calibration light source, and a log to save the time of the light source's use.

Document Summary

Chapter	Description
Chapter 1: <u>Setup</u>	Contains a list of package contents and unpacking instructions. Also contains procedures for connecting to a spectrometer.
Chapter 2: <u>DH-3 Specifications</u>	Contains operating environment specifications, as well as other physical details of the product.
Appendix A: Calibration Basics	Provides an overview of the physics for radiometrically calibrated systems.
Appendix B: <u>DH-3 Use Log</u>	Provides a sample log for recording lamp use.

Product-Related Documentation

You can access documentation for Ocean Optics products by visiting our website at http://www.oceanoptics.com. Select *Support* → *Technical Documents*, then choose the appropriate document form the available drop-down lists.

Ocean Optics offers a Glossary of spectroscopy terms to help you further understand your state-of-the-art products and how they function, located at: http://oceanoptics.com/glossary/.

 Detailed instructions for OceanView Spectrometer Operating Software is located at: http://oceanoptics.com/wp-content/uploads/OceanViewIO.pdf.

Upgrades

Occasionally, you may find that you need Ocean Optics to make a change or an upgrade to your system. To facilitate these changes, you must first contact Customer Support and obtain a Return Merchandise Authorization (RMA) number. Please contact Ocean Optics Application Scientist for specific instructions when returning a product.

000-10000-191-02-201601 iii

Warranty

Our 3-Year Warranty covers Ocean Optics miniature fiber-optic spectrometers, spectral sensors, light sources and sampling accessories – regardless of the application – from manufacturing defects. It also covers fibers and probes for a full 12 months: http://oceanoptics.com/services/exclusive-3-year-warranty/.

This comprehensive warranty ensures you of the highest level of craftsmanship and reliability for years to come. No other manufacturer offers such a solid guarantee of quality and reliability.

The Occap Option 3. Year Warranty applies to Occap Option againment (evaluating OEM configurations).

The Ocean Optics 3-Year Warranty applies to Ocean Optics equipment (excluding OEM configurations) purchased on or after July 1, 2010. The warranty covers parts and labor needed to repair manufacturing defects that occur during the warranty period. We also will cover the costs of shipping warranty-related repairs from our customers to Ocean Optics and from us to our customers.

ISO Certification

Ocean Optics, the industry leader in miniature photonics, has been certified for ISO 9001:2008 certification applicable to the design and manufacture of electro-optical equipment since 2009.

Chapter 1

Setup

Overview

The DH-3 Series of Halogen Calibrated Light Sources for the UV-VIS-Shortwave NIR (230nm-1100nm) is a deuterium and halogen light source that provides known absolute intensity values at several wavelengths, expressed in μ W/cm²/nm. Since the spectral intensity of the DH-3 Series can be traced to an intensity standard traceable to the National Institute of Standards and Technology (NIST), it is specifically designed for calibrating the absolute spectral response of your system.

Note

If you have a spectrometer setup that is highly sensitive, you may not be able to use the DH-3 Series as a calibration source.

DH-3 *plus* Calibrated Light Source

Models Available

DH-3 Series light source models are available in regular (230 - 1100 nm) and extended (EXT models) (230 - 2400 nm) wavelength ranges. The following models are available in the DH-3 Series:

Model	Calibrated Wavelength Range	Maximum Uncertainty Level	Shutter?
DH-3-BAL-CAL	230 – 1100 nm	10%	No
DH-3-BAL-CAL-EXT	230 – 2400 nm	10%	No

In addition the following *plus* versions are available which reduce the percentage of uncertainty to ~4% and offer a shutter:

Model	Calibrated Wavelength Range	Maximum Uncertainty Level	Shutter?
DH-3 plus-BAL-CAL	230 – 1100 nm	4%	Yes
DH-3 plus-CAL-EXT	200 – 400 & 350 – 2400 nm	3.7%	Yes

The following sections provide instructions on unpacking and setting up your DH-3 Series Light Source.

Unpacking the DH-3 Series Light Source

▶ Procedure

- 1. Unpack your lamp assembly and power supply carefully. Although the lamp is rigidly mounted, dropping this instrument can cause permanent damage.
- 2. Inspect the outside of the instrument and make sure that there is no damage. Do not use the instrument if damage is present.
- 3. Use this instrument in a clean laboratory environment (see *Operating Environment*).

Contents

Your DH-3 Series Light Source package should contain the following:

- □ DH-3 light source unit
- Power cord
- □ Lamp Calibration Report for using the DH-3 light source with a CC-3-UV-S cosine-corrected irradiance probe
- □ 1 CD that holds files for lamp calibration reports
- □ 1 Allen wrench for adjusting the cosine corrector

Connecting a Spectrometer to the DH-3

Before using a DH-3 Series light source for the first time, check for transport damage. Be sure to adhere to all warnings on the unit and in this operational manual. Make sure you have your DH-3 light source, your spectrometer, a CC-3 cosine-corrected irradiance probe, and Ocean Optics spectrometer operating software.

▶ Procedure

Use the following procedure to connect your DH-3 light source to a spectrometer:

- 1. Loosen the set screw on the DH-3's SMA connector.
- 2. Screw the CC-3 cosine corrector onto the end of the fiber. The connection should be tight. Insert the CC-3 all the way into the DH-3's SMA connector.
- 3. Tighten the setscrew on the SMA connector of the DH-3 with an Allen wrench. Connect the other end of the fiber into the SMA connector of the spectrometer.
- 4. Plug in the power cord.
- 5. Turn the lamp on using the ON/OFF switch on the back of the light source.
- 6. Turn on the deuterium light and the halogen light on the front of the light source.
- 7. Allow the lamp to warm up for at least 15 minutes before using it. Place the DH-3 horizontally.
- 8. Insert the calibration disk that came with your light source into your computer. This disk contains one ASCII file with the same information as the Lamp Calibration Reports that came with your DH-3. The file name contains the lamp's serial number, followed by **CC.LMP.** Copy these files to the desired directory on your computer.
- 9. Start your spectrometer operating software. See your spectrometer manual for instructions on calibrating the spectrometer with the DH-3.

Tips

When you perform measurements with the calibrated spectrometer system, record a new dark spectrum before each measurement. This minimizes the influence of a shifted dark spectrum.

Use a log to monitor the operation time of the light source. Recalibration of the light source after 50 hours of operation is recommended. A sample log is provided in Appendix B: <u>DH-3 Use Log</u>.

Chapter 2

DH-3 Specifications

This section provides information on the operating environment and specifications of the DH-3 Series light sources.

Operating Environment

The following table provides information on optimizing the operating environment of your DH-3 calibration light source.

Operating Environment	The DH-3 Unit
Moisture	Is designed for operation in dry rooms only.
Ventilation	Should be placed so that its location or position does not interfere with proper ventilation.
Heat	Should be placed away from any device that emits excessive heat.
Object and Liquid Entry	Should be positioned so that objects do not fall on top of the unit. Additionally, ensure that no liquids are spilled into the enclosure through openings.

Specifications

Specification	Value
Spectral Range (calibrated): Regular Models EXT Models	230 – 1100 nm 230 – 2400 nm
Dimensions (LWH): DH-3-BAL-CAL and DH-3-BAL-CAL-EXT DH-3 plus-BAL-CAL and DH-3plus-CAL-EXT	13.8 cm x 6.3 cm x 6.1 cm; 5.4" x 2.5" x 2.4" 14.5 cm x 6.3 cm x 6.1 cm; 5.7" x 2.5" x 2.4"
Power Input/ Max. Power Consumption	100 W/ 190 W heating D-Lamp for 20 seconds
Time to Stabilized Output	20 minutes
Connector	CC-3 cosine corrector
Shutter: Regular Models plus Models	No Yes

000-10000-191-02-201601 5

Appendix A

Calibration Basics

Overview

Calibrated systems, independent of the particular calibrated unit, are always traceable to national standards. A calibrated item is comparable to all calibrated items which are calibrated for the same calibrated unit.

Each measurement result has an uncertainty, and the level of uncertainty is given either for one single standard deviation (k = 1) or for two standard deviations (k = 2), which is often named as expanded uncertainty.

A calibrated device should give trusted results; therefore, the calibration has to be done by the metrologist following a previously defined and proven calibration procedure. Clear documentation of the calibration setup and of the calibrated devices used is an indispensable requirement.

Calibration for Absolute Irradiance

Absolute irradiance has the physical unit μ W/nm/cm². The interpretation is as follows: This is the wavelength resolved electromagnetic radiation which is emitted through an area [cm²].

When you attach a cosine corrector correctly at the mounting of the light source then the amount of light has a defined electromagnetic radiation power per surface area of your cosine corrector.

More detailed information can be found at: http://oceanoptics.com/frequentlyaskedquestions/light-sources-radiometric/

Uncertainty Level Calculation for DH-3 *plus-BAL-CAL*

Each realistic measurement has an uncertainty and therefore, a calibration has an uncertainty. The uncertainty should be validated seriously since this reflects how reliable the calibration is. The following international standards define the uncertainty and are describing how the uncertainty should be derived:

- IEC Guide 115: Application of uncertainty of measurement to conformity assessment activities in the electrotechnical sector.
- JCGM100:2008: GUM 1995 with minor corrections

Ocean Optics calibrations are done in relation to these international standards.

000-10000-191-02-201601 7

Ocean Optics provides a calibration of the DH-3 *plus*-CAL on an absolute irradiance scale in μ W/nm/cm^2. The sources of uncertainties taken into account are listed below in the example. The actual values are listed in the individual calibration certificate for your light source. The calibration certificate contains more detailed information.

Sources of Uncertainties

	Variable	Source of uncertainty
1.	R	Uncertainty in reproducibility [R], caused by switching on/off
_1.1	S	Stability[S] within 50 hours of operation
2.	T and F	Influence of temperature [T] and humidity [F] in the air. The temperatures during calibration have a temperature range of 19 °C to 25 °C. The humidity might influence the calibration in the NIR for wavelength larger than 1100 nm.
3.	d	Uncertainty in mounting distance [d] of the used cosine corrector. 1.8 % per 0.1 mm deviation from aperture plane.
4.	ROT	Uncertainty from rotating [ROT] the cosine corrector.
5.	D_Lambda	Uncertainty caused by wavelength calibration of the spectrometer which was used to calibrate the light source. [D_Lamba[QE]=0.3 nm, D_Lambda[NirQ512]= 1 nm]
6.	D_AbsIrrad	Uncertainty of the calibration light source used. This is in most cases the Ocean Optics working standard. See calibration certificate for details.
7.	StrayL	Influence from spectrometers' internal stray light which was used to calibrate the light source.
8.	T_TEC_	Influence of the sensor temperature [TEC] of the spectrometer which was used to calibrate the light source.
9.	Dark	Influence from uncertainties of the measured dark level of the spectrometer used to calibrate the light source.
10.	Rep	Reproducibility of the used spectrometer system for calibration.
11.	SP_Lin	Linearity of the spectrometer system which was used to calibrate the light source.
12.	Bend	Uncertainty caused by bending [Bend] of the fibers.

These factors are taken into account for deriving the wavelength for resolved levels of uncertainty (listed below).

Standard Uncertainties and Uncertainty Budgets in % at Wavelength (Example)

	400	500	600	800	1000	1200	1600	1800	2000	2400
Standard uncertainty k = 1	5,09	3,64	3,01	3,00	3,04	3,04	3,05	3,04	10,86	10,86
Expanded uncertainty k = 2	10,18	7,28	6,01	6,00	6,08	6,08	6,10	6,08	21,71	21,71

Place the light source horizontally. A value of 6 % of expanded uncertainty must be taken into account for vertical placement.

Appendix B

DH-3 Use Log

DH-3 Series Use Log

Use Log No.:	_Page No.:	ID No.:			
Lamp S/N:	Date Calibrated:				
Reference Standard:	Worki	ing Standard:			
Note: Do not exceed 50 hours of total "ON" time without recalibration.					

Date Used	Start Time	Stop Time	Printed Initials	Signature	Running Total for "on" Time	Comments

Date Used	Start Time	Stop Time	Printed Initials	Signature	Running Total for "on" Time	Comments

Index

Α	0
absolute irradiance calibration, 7	operating environment, 5
calibration, 7 connection spectrometer, 3	package contents, 2 product-related documentation, iii
document audience, iii purpose, iii summary, iii	safety, A setup, 1 specifications, 5 specifications table, 5 spectrometer connection, 3
ISO certification, iv	uncertainty level caculation, 7 unpacking, 2 upgrades, iii
log, 9 M models, 2	W warranty, iv
models, 2	

